Bismuth is a component of several drugs, including the well-known Pepto Bismol. When bismuth is reduced to lower oxidation states or rendered cationic its complexes typically become more reactive, and thus suitable for bond activation chemistry. While the low-valent and cationic chemistry of lighter group 15 elements (e.g., phosphorus, non-metal) has thrived for decades, the analogous bismuth (metal, non-toxic) chemistry has proven to be extremely challenging. However, in the last few years, bismuth redox and Lewis acid-promoted chemistry has received increased attention. We synthesized the first carbene-bismuthinidene, isolated bismuth-phosphaketenes, and prepared bismaalkene cations with rare C=Bi multiple bonds. We are now engaged in the synthesis of new types of bismuth and antimony compounds for energy-relevant transformations of small molecules, including C-H activation.